
Using NoSQL Databases for Streaming Network Analysis

Brian Wylie, Daniel Dunlavy, Warren Davis IV*, Jeff Baumes**
*Sandia National Laboratories, **Kitware Inc

ABSTRACT

The high-volume, low-latency world of network traffic presents
significant obstacles for complex analysis techniques. The unique
challenge of adapting powerful but high-latency models to
realtime network streams is the basis of our cyber security
project. In this paper we discuss our use of NoSQL databases in a
framework that enables the application of computationally
expensive models against a realtime network data stream. We
describe how this approach transforms the highly constrained (and
sometimes arcane) world of realtime network analysis into a more
developer friendly model that relaxes many of the traditional
constraints associated with streaming data.

Keywords: NoSQL, database, network, streaming, analysis,
informatics, email, realtime.

Index Terms:! C.2.3 [Computer-Communication Networks]:
Network Operations – Network Monitoring; H.2.8 [Database
Management]: Database Applications— data mining

1 INTRODUCTION AND RELATED WORK
The challenges associated with the processing and analyses of a
live network stream are formidable. There are a myriad of open
source toolkits used for the ingestion and display of network
packet data; Snort[1], Wireshark (http://www.wireshark.org), and
Bro IDS[2] are a few of the popular ones, with more listed at
http://sectools.org. Such tools often provide a comprehensive set
of ‘filters or rules’ that can be applied to the network stream,
which in the case of Snort can include upwards of 20,000 rules.
Although powerful, this low-level localized ‘rule-based’ approach
breaks down for higher-level analysis functions such as “trend
analysis of organizational email traffic” or “identify high risk web
behavior by tracking uncommon web domains.”

The other extreme to these constrained streaming tools is to save
the network captures to disk and utilize one of the analytically
rich, publicly available toolkits such as WEKA[6], Orange[3],
Titan Toolkit[7], etc., on the historical data. The significant
downside to this file based approach is that the analysis becomes
forensic in nature and the developer may find themselves
describing their new algorithm results against the Enron Email
database or a p-cap file from 6 months ago. From personal
experience, after presenting such work our network incident
response team shook their heads, grumbled about the lack of
relevancy, and went back to writing new rules for the corporate
intrusion detection system (IDS).

The rest of this paper describes our use of NoSQL databases to
‘cross the chasm’ between traditional offline analysis and realtime
network systems. This approach enables the application of
analytical models to streaming network data with the results
presented to a network defender within 10-20 seconds. In addition
our system provides a flexible environment where different
languages/scripts are welcome, components are interchangeable
and most importantly it’s remarkably resilient to unstable
research-focused code.

2 APPROACH
Initially our project investigated a development model within an
existing realtime packet processing toolkit but we quickly
encountered constraints that would not allow us to work on our
higher-level analysis goals. We also struggled with the unfamiliar
and inflexible development environment. The team then moved to
an ‘offline’ development model using our favourite toolkits and
scripting languages. After several meetings with the network
incident response team we realized that our techniques would
have substantially less impact if not incorporated into the
production network system. Thus the project had three significant
tension points:

• Familiar development environment in tension with a

constrained and unfamiliar packet processing library
• Agile research software (read: “buggy”) in tension with its

deployment into a production system
• Analysis goals requiring large windows of data in tension with

the transient, streaming network data

Our approach incorporates the use of a NoSQL database as the
key element in the mitigation of these three tension points (see
Figure 1).

Figure 1: Conceptual diagram of the approach used for our cyber
defense system illustrating the central role served by our NoSQL
database.

2.1 NoSQL vs. Traditional RDBMS
Here we briefly discuss our use of a NoSQL database (or data
store) as opposed to a traditional database (often referred to as an
RDBMS). We chose NoSQL primarily because its schema-less
key-value storage allows arbitrarily organized data into the
database, and secondly because of its simple mechanisms for
storage of binary data. The processing and analysis of malicious
emails is one of our project’s major use cases and the storage of
email serves as a good exemplar for both of these issues.

Figure 2: Screenshot of an email stored in one of our NoSQL databases
(CouchDB http://couchdb.apache.org).

The storage of emails exercises both the schema-less architecture
(arbitrary metadata fields) and the binary storage (for
attachments). The email depicted in Figure 2 has been cropped but
this particular email has about 15 metadata fields of various
origin, an attachment (a Microsoft Word doc) and two bundled
mime-types (html and plain text).

2.2 Benefits of a loosely coupled system
Traditionally network packet processing and analysis is
accomplished with a tightly coupled software system. The
“always on” world of network packets will often impose a fairly
rigorous set of system constraints around latency, throughput,
performance and resources. In our experiences these constraints
often lead to frustrations either with the development environment
or in our inability accomplish a higher level analysis task. The
fundamental role of the database in our system is to change the
traditional tightly coupled software system into a loosely coupled
“federated” system. The benefits of this transformation are
substantial and reflect themselves throughout the rest of the paper;
in particular the loose coupling helps us address many of the key
challenges associated with our tension points.

2.3 Packets to database
 Packet processing is a production world where services and
systems are literally expected to run 24/7 bug-free. As developers
in a research project, we struggled with the pragmatics of
deploying new algorithms within one of these environments. We
have to balance our enthusiasm for new algorithms and tools with
maintaining flawless production-system stability. Our approach
was to completely decouple the packet processing from the rest of
the software pipeline (we are currently using the open source Bro
IDS and an internal proprietary system). Both systems are
interchangeable and primarily do packet reordering and re-
sessionization. Email is a good example of what this functionality
does:

Figure 3: Four emails (green, red, purple and orange) scattered within
the “firehose” of data packets transported by a network link. A typical
corporate network supports a large number of protocols: HTTP(web),
FTP(file transfer), DNS(name resolution), and SMTP(email).

Our four different emails exist within the “sea” of other network
traffic; the packet processing system simply aggregates the
packets associated with a particular flow and places them into our
NoSQL database with a bit of meta data (source_ip, dest_ip, port,
flow_id, and datetime).

2.4 Feature Extraction
The next step in our pipelined process is feature extraction and it
clearly demonstrates the benefits afforded by both the NoSQL
database and the loosely coupled system. The aggregated packets
are stored in the database as raw bytes by the packet capture
engine. The organization of bytes in an email message, which in
actually is a fairly sophisticated hierarchical container, can be
complex and is covered in numerous RFCs. Fortunately there is a
Python module (email) that helps decipher, traverse and unpack
an email into its constituent parts: plain text, html, attachments,
and the long, variable length, set of metadata tags. The feature
extraction script simply loops over all new incoming emails, pulls
the raw bytes from the database, organizes the email into its
constituent parts and places those back into the database. This
approach enables the developers (and more importantly the
network defenders) to ‘at a glance’ see everything about that
email including, if necessary, the raw bytes associated with the
network packet capture. At this point the email is ready for
downstream processing by various analytic algorithms. See Figure
2 above.

2.5 MapReduce Views
As an alternative to the traditional relational query language
(SQL), many NoSQL databases provide filtering and MapReduce
frameworks. A variant of MapReduce called incremental
MapReduce provides capability that becomes absolutely critical
when working with streaming data stores. Incremental
MapReduce means that the MapReduce can be incrementally
updated with just the new data coming in and the results are valid
for the entire data store. CouchDB supports incremental
MapReduce natively and MongoDB (the other NoSQL database
we use) supports it indirectly with some additional bookkeeping.

2.5.1 Pipeline Management
Incremental MapReduce views manage the entire pipeline process
efficiency in the complex world where new data is continuously
streaming in and existing data is continuously changing state. A
concrete example of pipeline management is feature extraction,
the second stage in the pipeline. When emails first come into the
database they are basically just big binary blobs and do not have
much metadata. The feature extraction view ‘emits’ documents
without the features_extracted tag. A script pulls that view,
extracts features for that document, marks it with
(features_extracted=True) and moves on. Benefits to this
approach include the following:

• If the feature extraction script crashes, the document causing

the crash will not get marked and can be used for debugging.
Note: Because we are no longer tightly coupled with the packet
processing our script crash has no impact on the packet
collection. This benefit in particular cannot be overstated as it
squarely addresses one of our key tension points and allows
research software to run side-by-side with the production
network functions.

• After the crashing script is fixed, it can simply be restarted and
it will automatically play catch-up on the emails that have piled
up in the meantime.

• At any point you can run a script that ‘un-tags’ some of the
documents. If you have a new version of the feature extraction
script you can go un-tag the last days worth of documents and
the script will automatically include those in its processing.

2.5.2 Text Analysis
The views used for text analysis process are more complex and
illustrate the true power of incremental MapReduce. Here we
provide pseudo code (the real views are written in Erlang).

<<< Feature Dictionary View >>>
Map:
 if doc[“include_in_model”]:
 for feature,count in doc[“feature_vector”]:
 emit (feature, count)

Reduce:
 # Reduce sums the counts associated with each feature
 function (key, values) {
 return sum(values)
 }

<<< Feature Table View >>>
Map:
 if doc[“include_in_model”]:
 for feature,count in doc[“feature_vector”]:
 emit (doc[“id”], feature, count)

Reduce:
None

As shown in Figure 1, the system’s real power is the ability to
compute a set of analytical models on a the corpus as a whole and
then have those models applied to the real time incoming network
stream. Looking at Figure 6 in the next section, we see that the
input into our Latent Dirichlet Allocation (LDA) model is a sparse
feature frequency matrix that can be extremely large (number of
emails X number of features). In particular the use of of the two
incremental MapReduce views above allow this matrix to be kept
up-to-date in real time for a significant number of emails.

2.6 Model Generation and Evaluation
The detailed coverage of the algorithms used for model generation
and evaluation are beyond the scope of this paper, but we did
want to illustrate one concrete example of how the database
benefits model generation, model storage, and realtime model
evaluation against incoming network data.

Figure 6: The sparse input feature matrix to our Latent Dirichlet
Allocation (LDA) model is constructed from the incremental
MapReduce views provided by our NoSQL database.

The use of a sparse feature frequency matrix is common for
text/feature analysis algorithms. Although conceptually simple the
construction and maintenance of this matrix can be challenging
when placed into a system where new data is continuously coming

in, old data is getting expired, and the columns of the matrix
might be based on statistical sampling of a large database (our
system has all of the above). By utilizing the views described in
section 3.5.2 we can properly construct and maintain this matrix.
The feature_dictionary_view provides a global index for each
unique feature and the feature_table_view provides the features
associated with each observation(document). The generation and
evaluation of models varies based on domain and model types, but
for our example of using LDA on email features the method is as
follows:

• Run a sampling process which statistically samples a large

number of the observations in the database (by simply adding
the include_in_model tag to each of the samples).

• The views now automatically update themselves with the

new sampled observations.

• Run model generation process: Pulls the views described
above which generate the feature matrix which is used
downstream to generate various models.

• The models are versioned and stored into the database.

• Run the model evaluation process: Pull the models + new

emails from the database, evaluate emails against the models
and place the results of the evaluations back into the
database.

The flexibility afforded by this approach is significant, squarely
hitting our “familiar development environment” tension point.
Using the database as an integration point means each part of the
process is orthogonal to the rest; the sampling could be a python
script using an “R” interface, the model generation and evaluation
could be done using a Java Library. Also since database drivers
are socket based, each part of the process could be run on entirely
separate machines (we often do exactly that when working
on/debugging a particular part of the pipeline).

2.7 Web Interface
The results of this pipeline must be presented to the end user in
order to make useful decisions based on the available data. We
chose the web for our UI deployment target due to its increasingly
rich set of expressiveness through HTML5 and its ease of
deployment to a wide number of users. Splunk’s web application
environment enables query management and data drill-down, in
addition to the use of Splunk’s rich set of visual tools. We
augmented these tools with networks and charts based on the D3
Javascript library[5]. The use of a NoSQL database enables the
web interface to interactively query the database for information
through the use of anychronous Javascript (Ajax).

Figure 7: (Top) Web interface used to communicate the analysis results
to the network defender, where dots fade in and out in realtime with
model-based location. (Bottom) Another form of the web interface with
scatter plots, parallel coordinates, and a histogram showing emails
within the last 60 minutes.

3 CONCLUSIONS AND FUTURE WORK
In this paper we have discussed a methodology that was used for
real-time data analytics on a large data stream. We believe that the
design decisions presented here, such as NoSQL database use,
decoupled components, and a method for incorporation of deep-
analytics will be useful in a wide variety of large data streaming
applications. Future directions include codifying these techniques
into coherent systems of reusable components and testing our
work with additional database, analytics, and visualization
systems.

4 ACKNOWLEDGEMENTS
This work was funded by Sandia National Laboratories, a multi-
program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.

5 REFERENCES
[1] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks”,

Proceedings of LISA '99: 13th Systems Administration Conference, Seattle,
Washington, USA, November 7–12, 1999.

[2] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-Time
Computer Networks”, 31(23—24), pp. 2435-2463, 1999.

[3] T. Curk, J. Dem!ar, Q. Xu, G. Leban, U. Petrovi", I. Bratko, G. Shaulsky, B.
Zupan. “Microarray data mining with visual programming”. Bioinformatics.
2005 Feb 1;21(3):396-8. [Orange]

[4] S. Bird, E. Klein, and E. Loper, “Natural Language Processing with Python -
Analyzing Text with the Natural Language Toolkit”, O'Reilly Media, 2009.

[5] M. Bostock, V. Ogievetsky, J. Heer, “D3: Data-Driven Documents”, IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, “The
WEKA Data Mining Software: An Update”, SIGKDD Explorations, Volume
11, Issue 1, 2009.

[7] B. Wylie, J. Baumes, “A Unified Toolkit for Information and Scientific
Visualization”, IS&T/SPIE Electronic Imaging 2009, Visual Data Analytics
(VDA 2009), 2009.

[8] P. Näsholm, “Extracting Data from NoSQL Databases-A Step towards
Interactive Visual Analysis of NoSQL Data,” 2012.

[9] T. Thantriwatte, “NoSQL query processing system for wireless ad-hoc and
sensor networks,” Advances in ICT for …, 2011.

[10] E. Meijer and G. Bierman, “A Co-Relational Model of Data for Large Shared
Data Banks,” Commun Acm, vol. 54, no. 4, pp. 49–58, 2011.

[11] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Record, vol. 39,
no. 4, May 2011.

[12] AlSumait, L., Barbara, D., & Domeniconi, C. (2008). On-line LDA: Adaptive
Topic Models for Mining Text Streams with Applications to Topic Detection
and Tracking (pp. 3–12). Presented at the Data Mining, 2008. ICDM '08.
Eighth IEEE International Conference on, IEEE Computer Society.
doi:10.1109/ICDM.2008.140

[13] Amin, R. M., Ryan, J. J., & van Dorp, J. R. (n.d.). Detecting Targeted
Malicious Email Using Persistent Threat and Recipient Oriented Features.
ieeexplore.ieee.org. Retrieved May 8, 2012, from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06065730

[14] Bifet, A., Holmes, G., Pfahringer, B., Read, J., Kranen, P., Kremer, H., Jansen,
T., et al. (2011). MOA: a real-time analytics open source framework (Vol. Part
III , Volume Part III). Presented at the ECML PKDD'11: Proceedings of the
2011 European conference on Machine learning and knowledge discovery in
databases, Springer-Verlag.

[15] Hybrid traffic classification approach based on decision tree. (2009). Hybrid
traffic classification approach based on decision tree (pp. 5679–5684). IEEE
Press.

[16] Shazmeen, S. F., & Gyani, J. (n.d.). A Novel Approach for Clustering E-mail
Users Using Pattern Matching (pp. 205–209). Presented at the 2011 3rd
International Conference on Electronics Computer Technology (ICECT),
IEEE. doi:10.1109/ICECTECH.2011.5942082

[17] Shih, D.-H., Chiang, H.-S., & Yen, C. D. (2005). Classification methods in the
detection of new malicious emails. Information Sciences, 172(1-2), 241–261.
doi:10.1016/j.ins.2004.06.003

[18] Williams, N., Zander, S., & Armitage, G. (2006). A preliminary performance
comparison of five machine learning algorithms for practical IP traffic flow
classification. ACM SIGCOMM Computer Communication Review, 36(5), 5–
16. doi:10.1145/1163593.1163596

